Application of Single Objective Genetic Algorithm to Optimize Heat Transfer Enhancement from a Flat Plate
Authors
Abstract:
The optimal shape of a two dimensional turbulator above an isothermal flat plate is found by using numerical simulation. The turbulent boundary layer over the flat plate was disrupted at various situations by inserting a quadrilateral bar where the boundary layer thickness kept more than three times greater than the insert\'s height. As a result, the overall heat transfer coefficient of the wall as well as the skin friction coefficient was altered. The single objective Genetic Algorithm (GA) coupled with the modified Teach-t code were employed to optimize the shape and distance of the obstacle from the plate. When the optimal geometry employed, the mean heat transfer coefficient is enhanced by more than 51% over the affected area. Flow features around the quad, each makes its own contribution to the heat transfer change. The stagnation point formed on the frontal face of the body accounts for the slight decrease in the heat transfer coefficient, while the jet underneath the obstacle followed by the developing boundary layer are responsible for the sudden increase of the heat transfer coefficient. However, the downstream wake zone makes the main and widespread contribution.
similar resources
Optimization of Heat Transfer Enhancement of a Flat Plate Based on Pareto Genetic Algorithm
A quad inserted into a turbulent boundary layer of a flat plate and its effect on average heat transfer and the friction coefficient is studied. To optimize this effect, the edge sizes and distance of the quad from the flat plate are continually modified. In each case, simultaneously the heat transfer enhancement and reduction in skin friction are analyzed. For optimization, the genetic algorit...
full textFluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer
The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...
full textThe Effect of Square Splittered and Unsplittered Rods in Flat Plate Heat Transfer Enhancement
A square splittered and unsplittered rod is placed in a turbulent boundary layer developed over a flat plate. The effect of the resulting disturbances on the local heat transfer coefficient is then studied. In both cases the square rod modifies the flow structure inside the boundary layer. As a result, a stagnation point, a jet and wake area are generated around the square rod, each making a co...
full texteffect of jet and wake on boundary layer disturbance and heat transfer enhancement from a flat plate
0
full textfluid flow and heat transfer of nanofluids over a flat plate with conjugate heat transfer
the falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. this phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. in this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...
full textHeat transfer enhancement in a spiral plate heat exchanger model using continuous rods
This study presents an innovative and simple way to increase the rate of heat transfer in a spiral plate heat exchanger model. Several circular cross-section rods, as continuous vortex generators, have been inserted within the spiral plate heat exchanger in the cross-stream plane. The vortex generators are located at various azimuth angles of α=30◦, 60◦, 90◦, and 120◦ with non-dimensional diame...
full textMy Resources
Journal title
volume 25 issue 1
pages 67- 78
publication date 2012-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023